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Abstract

Ubiquitous computing applications are increasingly leveraging contextual information from sev-
eral sources to provide users with behavior appropriate to the environment in which they reside. If
these sources of contextual information are used and deployed in an ad hoc manner, however, they
may provide overlapping functionality, fail to provide needed functionality, and require the use
of inconsistent interfaces by applications. To overcome these problems, we introduce a concise
organization of services and a single service interface that provide applications with contextual
information in a unified manner. We show, via example applications and services that we have im-
plemented, how our service organization and interface can be used to allow proactive applications
to adapt their behavior to match a user’s current environment.
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1 Introduction

Fueled by advances in processing capability, storage capacity, and battery life, the proliferation of
mobile computing devices is rapidly turning the focus of computing away from desktop personal
computers and towards a collaboration between several mobile devices, traditional personal com-
puters, and servers. Unfortunately, as the usage of mobile computing devices has increased, the
amount of user effort required to operate these devices has increased as well.

As part of the Aura Project [1] at Carnegie Mellon University, we are investigating how appli-
cations can proactively adapt to the environment in which they operate to provide users with more
intelligent application behavior, thus allowing users to focus on higher level tasks.

To provide adaptive applications with environmental information, we have developed a set
of basic “contextual services”. These contextual services provide applications with properties
of both physical entities and available resources such as: the location of people, the location and
properties of printers, the amount of network bandwidth available, the CPU load on various servers
etc. Applications communicate with these contextual services via an SQL-like query interface that
allows applications to easily synthesize information from several different sources. Synthesizing
this information allows applications to adapt to environmental and resource changes without user
intervention.

To show how contextual services can enable proactive and adaptive applications, we will con-
sider two simple motivating examples. In the first example we will consider a user, George, who is
giving a presentation at a meeting with a remote participant. Contextual services will allow George
to perform tasks such as selecting a conference room with both a video projector and enough wire-
less bandwidth for videoconferencing. They will also allow him to discover the whereabouts of
late participants to the meeting. In the second example, we will show how contextual services can
assist a user, Jane, who has demanding network bandwidth requirements in a bandwidth scarce
environment. In this example, contextual services will allow Jane to move to a location where her
bandwidth demands can be met.

Clearly, contextual services can provide useful information. However, designing a single in-
terface for accessing contextual information is a difficult task. Consider some of the requests that
might be used to implement the scenarios described above:

• What devices are in room 160?

• What is the expected bandwidth in room 160 between 2pm-3pm tomorrow?

• Where, within 300 meters of my current location, am I likely to find the best wireless network
bandwidth in the next 5 minutes?

In addition, since we desire to support a wide variety of applications beyond the given scenar-
ios, we consider a wide variety of contextual information requests such as:

• What devices does John currently have with him?

• When will network bandwidth be best, within the next hour, to flush my distributed file
system’s cache?

• Where has John been today?
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• What is the compute server’s load likely to be in the next minute?

• Inform me whenever John moves more than 50 meters.

• Where is the closest color printer with an empty print queue?

A straightforward approach to providing the information desired in the requests listed above
is to write custom services, as needed, to provide the requested information. Unfortunately, using
such an ad hoc approach will result in multiple services with multiple interfaces and inefficient
design. Even services that function well individually could become fractured and inefficient when
deployed and used in conjunction with other contextual services. Without a rationale for designing
services, functionality may overlap and compete with other services. Without a common service
interface, developers must learn multiple interfaces, and clients must include runtime support for
multiple interfaces.

To avoid such problems, contextual services must be developed with coherent and focused
functionality. In addition, there must be a single interface to all services to provide a consistent
mechanism for client access, eliminate redundant client code, and aid deployment of new services.

We propose an organization of contextual services that allows them to be developed cleanly,
and we propose an interface that allows a wide variety of contextual services to be accessed. Us-
ing our service organization and Contextual Service Interface (CSI), we have developed a set of
contextual services that support proactive and adaptive applications such as those mentioned in the
two examples mentioned earlier.

Our discussion will proceed as follows: Section 2 will outline our service and service interface
architecture. Section 3 will outline service interface requirements. Section 4 will introduce major
CSI functions. Section 5 will discuss alternative methods of CSI implementation. Section 6 will
discuss our CSI implementations. Section 7 will give an overview of services that we have de-
ployed. Sections 8 and 9 will discuss example application implementations. Section 10 will give
an overview of related work, and Section 11 will conclude our discussion.

2 System Architecture

2.1 Service Architecture

A key difference between traditional computing applications and ubiquitous computing applica-
tions is the need for ubiquitous computing applications to understand the physical environment in
which they reside. We argue that providing information on the aspects of the physical environment
that are most relavant to mobile applications can be accomplished by providing information on
entities that can be grouped into a small number of classes.

In particular, our architecture provides information on four classes of entities: people, devices,
physical spaces, and networks. While we hold open the possiblity of adding new classes of entities,
we intentionally construct our architecture to contain as succinct a representation of the world as
possible. We discuss each entity class briefly, noting alternative classes that could be considered.

Clearly ubiquitous applications will need information on people, devices (e.g. printers), and
physical spaces; hence, we define a service class for each of these. Arguably, we could have defined
classes for generic physical objects (e.g. tables) and a class for vehicles. For now, we choose to
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reduce the number of entity classes in our model by treating physical objects as ”dumb” devices,
and vehicles as spaces without fixed location in the world. We could also have defined a class for
power sources; however, as a power source essentially amounts to either an electrical outlet in a
physical space or a battery on a device, we treat these sources as attributes of physical spaces and
devices respectively.

As the behavior of many applications is tightly coupled to the ability or inability to communi-
cate, and available communication varies greatly with location, we introduce a networks class to
provide communication information to applications that require it. This is needed, for instance, if
Jane desires to know a nearby location where she can download a large multimedia file quickly, or
where on her business trip she will be entirely out of network range.

In addition to defining service classes for each of the entity classes listed above, we define a
service class that tracks the relationship between each pair of service classes as shown in Figure 1
(with the sole exception of people and networks since people are not usually directly related to
networks, but use them indirectly).

There are several other potential classes of entities that we could have considered. For instance,
we could have defined classes for weather or living things. As the need for additional classes is not
clear, they are currently omitted from our architecture.

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

Figure 1: Entity and Entity Relation Classes

2.2 Service Interface Architecture

Ideally, from an application’s point of view, contextual services would accept arbitrary queries for
contextual information without burdening the application with the details of how the information
was obtained. Though implementing this idealized model is not feasible, we use it as a starting
point in developing an architecture that enables applications to easily synthesize environmental
information.

Our system provides applications with a database-like abstraction of contextual services. Under
this scheme, clients issue queries, the queries are decomposed to operate on individual services,
and results are synthesized and returned to the application. For services that contain relatively
static data, this scheme allows for straightforward implementation using a database. For services
that provide dynamic information, a database may not be an appropriate implementation. Using a
database-like interface, however, provides applications with a consistent interface to these dynamic
services.

To illustrate how our interface simplifies communication with both services that statically store
data and those that actively compute the results to queries, consider figures 2, 3, and 4. Under
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SQL Interface

Corba Interface

SNMP Interface

Figure 2: Traditional Client-Service Interaction

the traditional model (shown in Figure 2) synthesizing information from several services requires
individual communication with each service using multiple incompatible interfaces. Applications
must include support for these interfaces and know how to synthesize the information returned.

As show in Figure 3 our interface allows applications to use a single interface to retrieve in-
formation from both services that are implemented as a database as well as services that actively
compute the results of queries. (A simple wrapper allows our interface to query SQL databases
without any additional coding.)

Finally, to remove the need for clients synthesize query results from multiple services, we
introduce a proxy (Figure 4) that can decompose queries sent from clients and synthesize the
results before returning them to clients. This enables client applications to focus on the information
that they desire, and reduces the need to worry about how contextual information is retrieved or
how expensive it is to compute. Thus extremely thin clients can issue rich queries without incurring
the large communcation and computational expenses of such queries.

3 Requirements of the Contextual Service Interface

Using a single interface for all contextual services as we propose imposes several demands on the
interface. In this section, we discuss several requirements and design guidelines of the Contextual
Service Interface. Once we have established the requirements of the Contextual Service Interface,
we will evaluate several possible implementations of the interface.
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CSI to SQL
Wrapper

Client

DB

Active
Comp.

Active
Comp.

CSI

CSI

CSI

CSI

SQL

Proxy
Query 

Synthesis
Logic

Figure 4: Proxy-Based CSI Client-Service Interaction
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3.1 Support for Multiple Implementations

In many instances, the data supplied by contextual services will be stored statically by services. In
these cases the most convenient implementation is likely to be a database. For instance, information
regarding building layout would likely be stored in a database. Since many services will store static
data, the service interface should cleanly support service implementation via a database.

In other cases, services may desire to always actively compute the answer to a query. For
instance, a person location service may desire to only compute the location of a person when a
query is received. In cases such as these, we should be careful not to force these services to use a
database since this could severely bloat services that would otherwise be very light.

In addition, services that actively gather data may desire to cache some amount of information.
Client-side libraries used to communicate with contextual services and the aforementioned proxies
may also desire to cache query answers. Hence, we should design the interface in a way that allows
caching at any stage shown in Figure 4. (This is particularly important when considering support
for dynamic attribute requirements as discussed in the next section.)

Finally, the service interface must also allow clients to issue queries that span multiple services.
This is critical in order to allow either a proxy or services themselves to perform the work of
synthesizing the result from multiple logical queries.

3.2 Support for Dynamic Attributes

In many cases the service attributes that service clients are interested in obtaining have relatively
static values and little uncertainty associated with that value. For instance, “Jane’s user ID” is a
relatively static attribute with little uncertainty. In other cases, service clients may be interested in
attributes that have dynamically changing values as well as uncertainty associated with them. For
these types of attributes, clients may require services to provide various meta-attributes. We desire
to support the following meta-attributes of dynamic attributes:

• Accuracy. Specifies to what degree of accuracy the value of this dynamic attribute is known.
For instance, if John is looking for Dave, a person location service could inform John that
Dave is at a particular location plus or minus some range.

• Confidence.Specifies to what degree of confidence the value and accuracy are known. For
instance, the bandwidth tracking service could tell Jane that bandwidth will be poor with a
high degree of confidence.

• Update time. Specifies at what time this attribute value was last measured or modified.

• Sample interval. Specifies over what interval of time the attribute value was gathered. This
information is necessary when sampling attributes that change continuously with time.

In many instances when querying dynamic attributes, applications may need to place con-
straints on the meta-attributes of the dynamic attribute that they are looking for. For instance, an
application may desire to know a person’s location with a particular granularity: “Is Dave home or
at school?” vs. “where exactly is Dave within the room?”. Also, applications may need to know
information that is fresh to a certain degree: “What is Dave’s location (updated within the last

6



minute)?”. To support this type of functionality, for each of the meta-attributes listed previously,
we desire to allow clients to specify desired constraints in the form of a minimum and maximum
acceptable bound.

The update time constraint is special in that it allows applications to specify either a relative
or an absolute time. This gives applications the ability to require that results be fresh enough to
be useful. In addition, this constraint can be used to specify that a future or historical value of an
attribute is desired.

Again, it is important to stress that not all services need to allow clients to specify attribute
requirements. However, for some services it is critical to support this functionality.

3.3 Query execution time

In some instances, the timeliness of a query is important. For instance, a driver of a car desiring to
know the location of the closest restaurant cannot likely afford to wait several tens of seconds for
an answer.

In situations such as this, a low delay waiting for rough answer from a service may be better
than a long delay waiting for a precise answer. Clients should be able to indicate to services how
long they expect to wait for an answer to a query. This can also give a service an indication of
how much effort it should expend in processing the query. We anticipate that this mechanism will
usually be used in a very coarse grained manner such as: if time limit is less than some threshold
return a cached answer; otherwise obtain fresh data.

While it would be possible to allow clients to specify further query constraints, such as a limit
on power consumed, we do not support any additional constraints since it is not clear that such
constraints would be worth the additional complexity.

3.4 Support for multiple platforms

The Contextual Service Interface must support clients and services that reside on a variety of
platforms, and are written in a variety of languages. The interface must be lightweight enough to
be practical on clients, and potentially services, running on small portable devices. A fundamental
way in which this can be accomplished is by not requiring all services, and clients, to implement
every aspect of the interface. Rather, services need only support the subset of the features described
in the interface definition that they need. Multi-platform support can also be facilitated if the
service interface allows clients and services to use existing technology as much as possible.

4 Contextual Service Interface Functions

We now discuss the functions defined by the Contextual Service Interface. We focus our discussion
on the fundamental interface function Query, and then briefly cover more advanced functions that
are essentially extensions of this function. We omit coverage of minor support functions.
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4.1 Query

The primary function defined by the Contextual Service Interface is the Query function, and it is
likely that this is the only function that many services will support. As we will discuss in Section 5,
an SQL database makes a convenient service implementation in some circumstances; hence, we
make an effort to make using an SQL database simple while still retaining support for the dynamic
attribute requirements mentioned previously. As a result, the Query function can be viewed as
a simplified SQL query with added provisions for attribute requirements, timely execution, and
support for meta-attributes in the result of the query. We now define the Query function and its
arguments:

QueryResult Query(selectedAttributes, serviceNames,
selectionExpression, attributeReqs,
timeLimit)

• selectedAttributes.This is a list of attributes to be returned by the query. This corresponds
to the “select” clause in an SQL query.

• serviceNames.A list of service(s) that should handle the query. This corresponds to the
“from” clause in an SQL query. Many services will only support a single entry in this
list (the name of the single service supported). However, allowing more than one name is
critical in allowing clients to express synthesis of information from multiple services. These
multi-service queries can then be used by either proxies that break this query into multiple
single-service queries or by services (such as those implemented via a database) that can
support multi-service queries).

• selectionExpression.Expression that selects which entity or entities the query refers to.
This corresponds to the “where” clause in an SQL query though our expressions are more
restricted than SQL. Again, an essential element in attaining our goal of service simplicity
is that we do not require all services to accept all expressions. So a person location service
might only accept expressions of the form “personID=x”.

• attributeReqs. For each of the meta-attributes of dynamic attributes listed in Section 3.2,
we may specify a minimum and maximum required bound. Again, the precise attribute
requirements supported and exactly which attributes these requirements can be applied to is
service specific.

• timeLimit. The time in which the client needs a reply. This argument can also be viewed as
a hint to the service on how much effort to expend in answering the query. High time limits
imply the client desires a precise answer while low time limits imply that the client prefers a
timely answer.

The result of a query is contained in a QueryResult structure which contains one or more lists
of attributes. Each attribute list corresponds to an entity selected by the selectionExpression, and
each list contains the attributes requested by the selectedAttributes parameter. Each entry in an
attribute list is either a StaticAttribute structure or a DynamicAttribute structure. Static attribute
structures simply contain the name of the attribute and its value. In addition to name and value,
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dynamic attributes may contain the additional meta-attributes discussed in Section 3.2 (the service
decides exactly which meta-attributes to include).

In addition, the QueryResult contains a completion flag that indicates whether or not the service
was able to completely satisfy the constraints of the query. In some circumstances, for instance, a
low time limit and stringent attribute requirements will preclude the service from satisfying both.
In these cases, the service may set this flag to indicate that the answer provided does not satisfy the
attribute requirements specified. Finally, the QueryResult also contains a timestamp of the time
(local to the service) at which the service executed the query. This is for convenience in interpreting
times reported in results of the query.

While the Query call suffices in many instances, there are situations in which it is insufficient,
inefficient, or inconvenient to rely solely on the Query call. We now introduce a small number of
extensions to the query call.

4.2 PostQuery

In many instances, clients may need to repeatedly obtain the same result from a service. While in
some instances this can be accomplished via repeated Query calls, this can be inconvenient; more-
over, repeated Query calls may fail to provide needed functionality. For example, consider a client
that desires to hourly receive network bandwidth measurements sampled over 1 hour intervals.
Implementing this via repeated Query calls would require the client to suspend execution waiting
for the completion of each call. Further, processing overhead between each call would cause the 1
hour sample intervals to drift.

To relieve clients of the burden of repeated Query calls, reduce communication overhead, and
remedy the problems discussed above, we introduce a function we call PostQuery. Services that
support this call simply execute the specified query repeatedly at a given interval and use a callback
to send results to the client at a host and port specified by the client. PostQuery is defined as
follows:

QueryID PostQuery(selectedAttributes, serviceNames,
selectionExpression, attributeReqs,
timeLimit, execInterval, queryClient)

Arguments to this function are the same as the Query call with the exception of two new
arguments defined as follows:

• execInterval. Period at which to execute this query.

• queryClient. The client (hostname and port) to report the results to.

The QueryID returned is a handle that is used to tell which posted query a particular callback is
generated from and to stop execution of the posted query.

4.3 PostCondTrigger & PostModTrigger

While using PostQuery instead of repeated Query calls can be useful, the amount of work per-
formed by the client is essentially unchanged. In some circumstances, we may wish to push some
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of this work onto the service. This can increase simplicity of client code and reduce power con-
sumption at the client.

Consider, for instance, the airport bandwidth example mentioned previously (and described in
detail in Section 9). Jane’s client needs a way for bandwidth sampling to take place, but it only
wants to be informed when the available bandwidth drops below a certain threshold. For this type
of functionality we introduce the PostCondTrigger function where clients are informed of query
results only when a specified condition holds. PostCondTrigger is defined as follows:

QueryID PostCondTrigger(selectedAttributes, serviceNames,
selectionExpression, attributeReqs,
timeLimit, execInterval,
triggerExpression, queryClient)

Arguments to this function are the same as to PostQuery with the exception of one additional
argument defined as follows:

• triggerExpression. Predicate that controls when the callback will be triggered.

Note that PostCondTrigger can fundamentally be considered a PostQuery call that only sends
information when the given triggerExpression holds. It is important to take into consideration the
fact that while some services may be able to track each and every value change of its attributes,
others may require active work to measure attributes (or may have attributes that are constantly
in flux). For this reason we retain the execInterval parameter which tells these types of services
how often to check for changes (clients may also request notification of any and all changes from
services that can support this functionality).

Finally, while PostCondTrigger allows clients to receive information when some absolute con-
dition holds, there are situations where applications may need notification of a relative change in
attribute value. For these situations we introduce the function PostModTrigger which is defined
below:

QueryID PostModTrigger(selectedAttributes, serviceNames,
selectionExpression, attributeReqs,
timeLimit, execInterval, triggerAttributes,
triggerDeltas, queryClient)

Arguments to this function are the same as PostCondTrigger where the triggerExpression is
replaced by triggerAttributes and triggerDeltas:

• triggerAttributes. List of attributes to watch for changes.

• triggerDeltas. List of values (corresponding to this triggerAttributes) which will cause the
callback to be executed when a given attribute changes by more than its corresponding trig-
gerDelta entry.
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5 Implementation Alternatives

Given the requirements and API we have discussed, we now evaluate several alternative imple-
mentations of the interface. As we desire to leverage existing technology as much as possible,
all of our considerations will be based, to varying degrees, on existing standards. In the interest
of brevity, we will not address all of our requirements point-by-point; rather, we will discuss the
major benefits and drawbacks of each approach.

5.1 SQL Database

A natural candidate for service interface implementation is to use an SQL [3] database coupled
with ODBC or a similar communication scheme. A major advantage of using SQL is that services
that resolve queries from data stored statically can be implemented directly as an SQL database; in
addition, a large number of existing SQL implementations are available. Lacking in SQL, however,
is support for requirements on dynamic attributes.

A more serious drawback with SQL arises in the case of lightweight services that dynamically
compute results to queries. For these services, SQL is an exceptionally poor choice as using an
existing SQL implementation would result in running a complete database on the server whether
or not this database is needed. For these simple services that compute query results on demand, a
database would merely add unnecessary overhead.

5.2 LDAP

As the primary function required of the Contextual Service Interface is attribute value lookup,
LDAP [2] systems are another natural consideration for interface implementation since they pro-
vide the capability to retrieve values that are organized in a hierarchical namespace. The benefits
and drawbacks of using LDAP are somewhat similar to those of using SQL. On the positive side
implementations are readily available. However, these implementations use a database to store at-
tribute values which is not desirable for lightweight services. Hence using LDAP would either re-
quire a fresh implementation of the communication protocol, or extensive modification of existing
implementations. Like SQL, LDAP also does not provide direct support for attribute requirements
while providing a richer query language than some services may desire to support.

5.3 Simple Queries Encoded in XML Sent via HTTP

The solution we chose for implementation of the Contextual Service Interface was to use an SQL-
like query language encoded in XML [9] and transported over HTTP. Both XML and HTTP are
well established and widely deployed standards. Over this communication substrate, we define a
small set of query functions that clients and services use for communication. By encoding queries
in this manner, we can retain the benefits of SQL (ease of service implementation for static ser-
vices and powerful queries) while avoiding the overhead requiring serviced implementation via a
database. In addition, by allowing services to decide the types of queries they support, we allow
for both simple clients and services.
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5.3.1 Alternative Transport Mechanisms: CORBA, SOAP, RMI, RPC-2

Our choice of XML and HTTP for contextual service communication is based on the ubiquity of
XML and HTTP deployment and simplicity of their use. We also considered several variants of
remote procedure call for this purpose, but we chose not to use them for a variety of reasons. In
the case of CORBA [4], much of the functionality provided was seen to be extraneous and rather
heavy for extremely thin clients and services. SOAP [5] was viewed as too immature since the
standardization effort was ongoing at the time we commenced this work. RMI [6] is unattractive
for non-Java applications. RPC-2 [7] is unattractive for Java implementations, and, in addition, it
is increasingly passed over in many Internet settings in favor of HTTP [8] based protocols (such
as SOAP). Should, however, one of these transport mechanisms or another transport mechanism
become extremely attractive in the future, we could replace the current XML/HTTP mechanism.

6 Service Interface Implementation

Currently we have two implementations of the Contextual Service Interface: one in C and one in
Java. Both of these provide basic support for both client and service functionality, and are capable
of interoperating with each other.

6.1 CSI Implementation

Our C-based CSI implementation provides both client-side and service-side support for direct ac-
cess to the CSI functions defined previously. XML processing is implemented using the imple-
mentation of the DOM API provided by Apache’s Xerces project [19].

In addition to basic support, our Java CSI implementation provides functionality to make de-
veloping clients and services easier. For clients, the Java implementation provides three different
sets of methods for calling interface functions:

• Direct methods. These methods provide direct access to the Contextual Service Interface.
That is, clients supply all arguments to these functions as defined in Section 4. This gives
clients complete control, but can be somewhat verbose.

• Parser based methods.These methods simplify clients by allowing them to use SQL-like
expressions to construct queries.

• Attribute value retrieval methods. These methods provide simple means for clients to
retrieve a single value using a simple key (e.g. “What is Jane’s phone number?”) without
worrying about more advanced features such as attribute requirements.

For services, the Java implementation provides support for writing services from the ground
up, and convenience methods to make tasks such as error checking queries easier. Support is also
provided for exporting any SQL database (with JDBC support) as a contextual service; this allows
basic contextual services to be developed without any coding. This useful capability is a direct
result of the support for multiple implementations designed into the Contextual Service Interface.

Our Java implementation uses the DOM API implementation present in JDK 1.4 for XML
processing.
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6.2 Interface Implementation Performance

While our focus in our implementation thus far has not been on performance, we have run some
initial tests to determine how our implementation performs. All of our tests were conducted on
services and clients implemented in Java and running under JDK 1.4 on Windows 2000 machines.

We first measured the performance of the Contextual Service Interface compared to a mature
communication protocol: RMI. The services resided on a Pentium II 500 MHz machine with 128
MB of RAM attached to a wired 100 Mbps Ethernet while the clients resided on a Pentium III
600 MHz machine with 128 MB of RAM attached to a 11 Mbps wireless LAN (with a maximum
actual throughput of around 4.4 Mbps). The different subnets were connected through a routed
backbone.

To compare the two communication methods, we performed a simple “ping-pong” test where
each client called a method on the service that does nothing except return to the client. We timed
runs of 1,000 consecutive calls and averaged the measured time over the 1,000 calls. We then
repeated this test 20 times, computed a global average, and computed a confidence interval for that
global average. Table 1 shows our results.

Average 95% Confidence Interval
CSI 7.76 ms +/- 0.29 ms
RMI 3.85 ms +/- 0.23 ms

Table 1: Contextual Service Interface Performance vs. RMI

Our results show that the Contextual Service Interface (CSI in the table) executes an empty
call in roughly twice the time required for an empty RMI call. While we do not expect to en-
tirely match the performance of RMI for this test, we do expect that future implementations can
significantly narrow this performance gap. Currently we are using computationally expensive se-
rialization and deserialization methods such as the XML DOM API which unnecessarily creates a
tree representation of the serialized call. Switching to the SAX API should provide a significant
speed increase.

7 Deployed Contextual Services

Using the Java Contextual Services package we have deployed a basic set of contextual services
with one service per class of service depicted in Figure 1 (in general there may be several service
instances per service class). These implemented services are depicted in Figure 5.

Services in normal typeface were implemented using a simple database. For instance the De-
vices service is implemented as a SQL relation with attributes of deviceID, deviceType while the
PersonDevices service is implemented as a SQL relation with attributes personID and deviceID.

Services in italicized type required custom code to implement. The Access Point and Access
Point Devices services use SNMP [10] to obtain bandwidth and population information respec-
tively from 802.11 access points; these services make extensive use of dynamic attributes and
attribute requirements to provide users with a variety of information while only retrieving SNMP
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information as needed. The space service uses both custom code and a database to provide infor-
mation regarding the structure of physical spaces; for more information see [18].

The Java Contextual Service packages support for multiple implementations has allowed us to
quickly deploy simple attribute retrieval based services by simply using a database while allowing
us to write custom code for services where database implementation was not appropriate. In addi-
tion, implementing multiple services with a single database reduces the amount of communication
required since clients can issue a single multi-service as discussed in Section 3.1 query rather than
multiple simple queries.
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Figure 5: Implemented Services

We now illustrate how these contextual services we have deployed can be used to implement
the scenarios mentioned earlier. (In these scenarios users interact with “Aura clients” that contact
contextual services on behalf of users.)

8 Presentation Scenario

To illustrate how contextual services can assist applications and users, we consider in detail the
presentation scenario briefly mentioned previously:

George works on a campus equipped with contextual services and a wireless LAN. He is plan-
ning on giving a presentation at a meeting where there will be a remote participant; George will
bring a laptop equipped with a video camera and wireless network card which will allow the
remote user to participate in the meeting.

Contextual services allow George’s Aura client to select a video projector equipped confer-
ence room that is covered by two independent wireless access points. His Aura client is able to
determine that both of these access points will be highly likely to have bandwidth adequate for
the videoconference for the duration of the meeting. As the time of the meeting arrives, a key par-
ticipant is absent. Contextual services allow George to determine that this participant is on the
way.

This scenario requires fairly simple information from a variety of services. We divide the
presentation scenario into the following steps used by George’s client to find the information he
requires (in parenthesis we list services contacted to acquire information at each step).

1. Find all conference rooms in the desired building (Space).

2. For all conference rooms discovered in step 1, find all conference rooms with projectors
(DeviceLocation, Device).
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3. For each conference room with a projector find all access points that cover the room (Ac-
cessPointCoverage).

4. For each of these access points predict the network bandwidth during the time of the meeting
(AccessPoint).

5. Find the remote participant (People, PersonLocation).

Steps 1-3 require relatively straightforward queries on static attributes (attribute requirements
and meta-attributes are not needed). As mentioned previously, the contextual service interface
allows a database wrapper to deploy the services contacted in steps 2 and 3 using a single database;
hence, for steps 2 and 3 a single multi-service query can be used to increase efficiency. The Space
service contacted in step 1 is also implemented using a database as well, but the version of the
space service used here was more convenient to implement using a dedicated database since it
required a small amount of code in addition to the database.

Both the bandwidth and location information required in steps 4 and 5 are dynamic attributes.
For these steps the ability to specify requirements on attributes is essential. Likewise, the meta-
attributes discussed previously are important in interpreting the results returned by the services.

In step 4, providing requirements for the updateTime and sampleInterval meta-attributes of
bandwidth allows us to specify that we desire a prediction of future bandwidth over a specified
interval. The AccessPoint service can then return a prediction and also give an indication of how
confident it is in this prediction via the confidence meta-attribute.

For step 5, we use two pseudocode excerpts to illustrate in more detail how the Contextual
Service Interface is used. The first part of this step is obtaining a unique id for the user to be
located (John Doe). An attribute value retrieval method allows this to be accomplished easily:

remoteUID = PersonService.get(personID, name, "John Doe")

Now we may query the person location service for the remote user’s location. We use attribute
requirements in this query to specify that we desire fresh location information, but that we only
need a very rough accuracy (is the user on campus or not).

query(location, // selected attrib
PersonLocationService, // from service
PersonID = remoteUID // where clause
location.updateTime = // requirements

within 2 minutes of present time
location.accuracy

within 500 meters of actual location
10 seconds) // time limit

Now in resolving this query, our prototype PersonLocationService can potentially use location
information from a variety of sources. For instance we gather information from user calendars,
user login information, as well as the location of a user’s wireless device. The wireless device
location is the most accurate of these. Unfortunately, obtaining a list of devices in a single wireless
cell takes several seconds. As there are over 600 wireless cells in our wireless network, access
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points must be queried infrequently. Hence, despite the relatively fine spatial resolution obtained
from wireless device location, the updateTime requirement of 2 minutes precludes the use of this
information as it is likely to be too stale.

Now checking for a single device (instead of all devices) in a wireless cell takes approximately
one second so we might try gather fresh data to determine John’s location. However, the time limit
of 10 seconds indicates both that George cannot afford to wait several minutes for this response,
and that George is not interested in placing large demands upon the service.

Fortunately, the course grained location accuracy requirement allows a coarse-grained location
method such as login information or calendar information to be used. Both these types of queries
take under 1 second to gather the requested information so the people location service can check
both John’s login status as well as his appointment calendar to determine whether he is on campus.

As can be seen in this example, the ability of clients to communicate attribute requirements to
services is critical for allowing services to provide clients with the information they desire in an
efficient manner. We have further shown how CSI’s support for multiple implementations allows
simple services to be efficiently implemented while still supporting more complex services.

9 Bandwidth Advisor Scenario

9.1 Implementation of Bandwidth Advisor Scenario

Now consider the bandwidth advisor scenario:
Jane is waiting to depart on a business trip in an airport equipped with a wireless network.

Contextual services are deployed at the airport providing information on the network and the
physical layout of the airport. During her wait, Jane has been making some last minute changes
to a very large graphically rich document she needs to email to her office. Shortly before her plane
is scheduled to depart, she makes her final edits and clicks send. Unfortunately, a jumbo jet has
arrived recently at an adjacent gate, and deplaning passengers are saturating the network cell
in which Jane resides. Fortunately, Jane’s mail client discovers from information gleaned from
contextual services that she will miss her plane if she waits in her current location for her mail to
finish sending. A quick scan of the surrounding area reveals that there is excellent bandwidth a
short distance away. Following her device’s suggestions, Jane switches locations, and is able to
send her email before catching her flight.

As determining exactly when Jane needs to use large amounts of bandwidth is outside the
scope of our discussion (a related effort is working on this task), we use an abridged version of this
scenario consisting of the following steps:

1. Watch for low available bandwidth (i.e. high utilization) in the current cell (AccessPoint).
(The identity of the current cell is determined locally on Jane’s device.)

2. If the available bandwidth becomes low, find nearby locations where bandwidth is better
(AccessPointCoverage, AccessPoint).

This scenario uses a smaller number of services than the presentation scenario; however, all
steps require access to services that dynamically compute the results to queries. Hence, we make
heavy use of attribute requirements.
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Consider step 1 in detail. This step uses a trigger to relieve it of the burden of constantly polling
available bandwidth as illustrated in the following pseudocode excerpt:

postCondTrigger(mbpsTotal, // selected attrib
AccessPointService, // from service
apName= "MyCellID" // where clause
mbpsTotal.sampleInterval // requirements

10 seconds,
2 seconds, // time limit
10 seconds, // execInterval
trigger whenever // trigger cond.

mbpsTotal > 2.0
refToClient)

When the AccessPointService receives this query it knows from the sampleInterval requirement
and execInterval specified that it should begin sampling access point bandwidth every 10 seconds.
The trigger expression tells the service to inform the client whenever cell utilization is over 2.0
Mbps. When this happens, a callback is triggered on the client and it can proceed to look for a
better access point (step 2).

Step 2 first uses a simple query to retrieve a list of nearby access points. For each of these
access points, the sampleInterval and updateTime attribute requirements are used to specify that a
prediction of bandwidth in the immediate future is required. The AccessPoint service can then use
simple linear time series analysis to quickly provide a short term prediction. This is in contrast to
the long term bandwidth prediction required in the presentation scenario which necessitated access
to historical data, was computationally expensive, and far less accurate in the near term, but was
needed for the that scenario. The ability to specify attribute requirements is essential in allowing
the AccessPointService to decide which type of prediction is appropriate.

9.2 Bandwidth Advisor Performance

To determine what kind of performance we can expect from an active server, we measured the per-
formance of our access point tracking services using tests similar to those in Section 6.2. During
these tests, the services were actively gathering data from over 600 access points on CMU’s wire-
less network. (The bandwidth information was gathered every 10 seconds while the cell population
information was gathered every hour with the exception of a small number of cells for which it was
gathered every two minutes.) For the Access Point Service test, we queried the total bandwidth at
a single access point. For the Access Point Devices Service Test, we retrieved a list of all devices
at a single access point (approximately 4 devices were present at the time the test was run).

Both the Access Point Service and the Access Point Devices service were run on the same
machine: a 1.5 GHz machine with 256 MB of RAM. The client was run on a 300 MHz machine
with 128 MB of RAM (these tests used JDK 1.4 beta 3). For these tests, we timed runs of 100
consecutive queries and averaged the measured time over the 100 queries. We then repeated this
test approximately 20 times, computed a global average, and computed a confidence interval for
that global average. Table 2 shows our results.
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Average 95% Confidence Interval
Access Point Service 13.87 ms +/- 0.53 ms

Access Point Devices Service16.04 ms +/- 0.70 ms

Table 2: Access Point Services Performance

These results show that despite the large amount of work to constantly sample over 600 access
points, our network services can provide timely network information to applications. These times
will only improve as our implementation is refined.

10 Related Work

As discussed previously, the Contextual Service Interface performs a role that is somewhat simi-
lar to the attribute value retrieval facility provided by LDAP. Unlike LDAP systems, however, the
Contextual Service Interface supports the notion that attribute values may be determined dynam-
ically taking into consideration constraints (such as sample interval) required by applications; in
addition, attributes may have uncertainty and other meta-attributes associated with them. We have
also discussed how SQL databases can conveniently implement static services, but like LDAP are
insufficient for dynamic attribute resolution. The Contextual Service Interface is, however, de-
signed to be able to leverage SQL databases in certain circumstances without requiring them to be
used in all cases.

There has also been work on adding support for uncertainty to static databases [12] [13]. Our
work differs from efforts such as these in that we do not assume that all attributes of entities
we are interested in are stored in a static database, rather they can be computed dynamically.
Further, our interest with uncertainty is for the purposes of communicating some constraints on
meta-attributes to services and allowing services to report to clients observed meta-attributes. We
are not interested in extending SQL-like expressions to support uncertainty; in fact, our query
expressions are restricted to be less powerful than SQL expressions.

The “Context Toolkit” [14] [15] uses a very similar approach to the approach we have taken,
and supports entity attribute value retrieval via polling and callbacks. The largest difference be-
tween our work and the Context Toolkit is our explicit support for attribute requirements in requests
and meta-attributes in results. Without these capabilities, much of the functionality that we are in-
terested in supporting is lost. In addition, our focus is somewhat different. While the Context
Toolkit focuses on developing an object oriented framework and allows use of multiple wire proto-
cols, we focus on developing a standard interface for accessing services and force all services and
clients to use the same wire protocol. This sacrifices flexibility, but increases interoperability.

Systems such as Jini [16] and UPnP [17] provide mechanisms for discovering and using arbi-
trary network deployed services. Our goals are rather different: we propose a small set of service
classes for providing contextual information to applications via the particular interface that we
have discussed.
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11 Conclusion

We have shown how contextual services can be organized so that services are well focused and
cleanly designed. This organization has allowed us to define and implement a Contextual Ser-
vice Interface that provides applications with a uniform mechanism to query properties of physical
entities and available resources in the local environment. We have discussed how providing infor-
mation and allowing constraint specification on meta-attributes of “dynamic attributes” provides
essential functionality required to deal with issues such as uncertainty and attribute sample time.

We have developed a number of contextual services using this interface, and have shown how
the interface supports both simple service implementation using a readily available database as
well as dynamic computation of service query results. We have further shown, via examples, how
these services can be used to implement applications that adapt to provide users with behavior
appropriate to their local environment.
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